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Abstract. We study the three-dimensional Anderson model of localization with anisotropic hopping, i.e.,
weakly coupled chains and weakly coupled planes. In our extensive numerical study we identify and char-
acterize the metal-insulator transition by means of the transfer-matrix method. The values of the critical
disorder Wc obtained are consistent with results of previous studies, including multifractal analysis of the
wave functions and energy-level statistics. Wc decreases from its isotropic value with a power law as a
function of anisotropy. Using high accuracy data for large system sizes we estimate the critical exponent
as ν = 1.62 ± 0.07. This is in agreement with its value in the isotropic case and in other models of the
orthogonal universality class.

PACS. 71.30.+h Metal-insulator transitions and other electronic transitions – 72.15.Rn Localization effects
(Anderson or weak localization) – 73.20.Dx Electron states in low-dimensional structures (superlattices,
quantum well structures and multilayers)

1 Introduction

We study numerically the problem of Anderson localiza-
tion [1] in three-dimensional (3D) disordered systems with
anisotropic hopping. Previous studies using the transfer-
matrix method (TMM) [2–5], multifractal analysis
(MFA) [6] and recently energy-level statistics (ELS) [7,8]
showed that an MIT exists even for very strong anisotropy.
The values of the critical disorder Wc were found to de-
crease by a power law in the anisotropy, reaching zero
only for the limiting 1D or 2D cases. The main goal of the
present paper is to determine the critical exponent ν of
this second order phase transition with high accuracy. It is
generally assumed that ν only depends on general symme-
tries, described by the universality class, but not on micro-
scopic details of the sample [9]. Thus, anisotropic hopping
should not change ν. Recent highly accurate TMM stud-
ies report ν = 1.54± 0.08 [10], ν = 1.58± 0.06 [11], ν =
1.61± 0.07, and ν = 1.54± 0.03 [12] for isotropic systems
of the orthogonal universality class. But for anisotropic
systems of weakly coupled planes, ν = 1.3 ± 0.1 and
ν = 1.3±0.2 was found [3,4]. For the same model we found
in a recent high precision ELS study ν = 1.45±0.2 [8]. To
clarify this situation, we compute the localization length
by means of the TMM with high accuracy for large system
sizes and apply a finite-size scaling (FSS) analysis which
takes into account corrections to the usual one-parameter
scaling ansatz [11]. The resulting value of the critical ex-
ponent ν = 1.62± 0.07 confirms the recent high accuracy
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estimates. Thus the anisotropic Anderson model belongs
to the same universality class as the isotropic model.

Another interesting aspect of anisotropic hopping be-
side the question of universality is the connection to exper-
iments which use uniaxial stress to tune disordered Si:P
or Si:B systems across the MIT [13–16]. While applying
stress, the distance between the atomic orbitals reduces,
the electronic motion becomes alleviated, and the sys-
tem changes from insulating to metallic. Thus, although
the explicit dependence of hopping strength on stress is
material specific and in general not known, it is reason-
able to relate uniaxial stress in a disordered system to
an anisotropic Anderson model with increased hopping
between neighboring planes.

In the experiments, a large variation of the value of
the critical exponent ν has been observed with suggested
values ranging from 0.5 [13] over 1.0 [16], 1.3 [14], up to
1.6 [15]. Possibly this “exponent puzzle” [14] is due to
other effects in the experiments such as electron-electron
interaction [15] or sample inhomogeneities [14,17,18]
which are usually ignored in the original formulation of
Anderson localization. Furthermore, the extrapolation of
finite-temperature conductivity data down to tempera-
ture T = 0 is open to debate and should perhaps be
replaced [16,19] by application of the dynamical scaling
approach [20]. Another interesting question is, whether ap-
plying uniaxial stress is equivalent to changing the dopant
concentration. We note that for non-universal proper-
ties such as the value of the conductivity, it was shown
that stress and concentration tuning lead to different T
dependencies close to the MIT [16].
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2 The anisotropic Anderson model
of localization

We use the standard Anderson Hamiltonian [1]

H =
∑
i

εi|i〉〈i|+
∑
i6=j

tij |i〉〈j| (1)

with orthonormal states |i〉 corresponding to electrons lo-
cated at sites i = (x, y, z) of a regular cubic lattice with
periodic boundary conditions. The potential energies εi
are independent random numbers drawn from the inter-
val [−W/2,W/2]. The disorder strength W specifies the
amplitude of the fluctuations of the potential energy. The
hopping integrals tij are non-zero only for nearest neigh-
bors and depend on the three spatial directions, thus tij
can either be tx, ty or tz. We study two possibilities of
anisotropic transport: (i) weakly coupled planes with

tx = ty = 1, tz = 1− γ (2)

and (ii) weakly coupled chains with

tx = ty = 1− γ, tz = 1. (3)

This defines the strength of the hopping anisotropy γ ∈
[0, 1]. For γ = 0 we recover the isotropic case, γ = 1
corresponds to independent planes or chains. Note that
uniaxial stress would be modeled by weakly coupled chains
after renormalization of the hopping strengths such that
the largest t is set to one in equation (3).

3 Transfer-matrix method in anisotropic
systems

We study the localization length λ, describing the expo-
nential decay of the wave function on long distances. We
compute it using the TMM [9,21,22] for quasi-1D bars of
cross-section M ×M and length L� M . The stationary
Schrödinger equation HΨ = EΨ is rewritten in a recursive
form:(

Ψi+1

Ψi

)
=

(
(E1−Hi)/tb −1

1 0

)(
Ψi
Ψi−1

)
= Ti

(
Ψi
Ψi−1

)
.

(4)

Ψi, Hi, and Ti are wave function, Hamiltonian matrix,
and transfer matrix of the ith slice of the bar, respec-
tively. Unit and zero matrices are denoted by 1 and 0
and tb is the hopping integral along the bar axis. We con-
sider the band center E = 0. Given an initial condition(
Ψ1
Ψ0

)
, equation (4) allows a recursive construction of the

wave function in the bar geometry by adding more and
more slices. λ(M,W ) is then obtained from the smallest
Lyapunov exponent of the product TLTL−1 · · ·T2T1 of
transfer matrices [23], where the length L of the bar is in-
creased until the desired accuracy of λ is achieved. With
increasing cross-section of the bar the reduced localization
length ΛM = λ(M,W )/M decreases for localized states

5 15 25 35 45
M

0.1

0.05

Λ
M

3
4
5
6
6.5
7
8
9

1

2

3
4
5

0.5

Λ
M

W

⊥

||

Fig. 1. Reduced localization length for coupled planes with
γ = 0.96 for parallel (top) and perpendicular (bottom) orien-
tation of the transfer-matrix bar. The relative error is 1% (large
symbols) or 0.2% (small filled symbols connected by lines to
guide the eye).

and increases for extended states. Thus it is possible to
determine the critical disorder at which ΛM is constant
from plots of ΛM versus M .

For the anisotropic systems there are two possible ori-
entations of the axis of the quasi-1D bar: parallel and
perpendicular to the coupled planes or chains. The local-
ization lengths in the perpendicular direction are smaller
than in the parallel direction by a factor of about 1−γ for
coupled planes and (1− γ)2 for chains [3,4]. Nevertheless,
the critical disorder Wc should not depend on the orienta-
tion of the bar [3,4]. For strong anisotropies γ ≥ 0.9 this
is difficult to verify numerically, as can be seen for the
case of weakly coupled planes in Figure 1. For the parallel
orientation of the bar we find the usual critical behavior
of ΛM as described above. We deduce a critical disorder
Wc ≈ 7 for this case. But for a perpendicular orientation
of the bar the behavior of ΛM versus M is different as
can be seen in the bottom part of Figure 1. There are two
striking features. First, ΛM oscillates for small W and M
between smaller values for odd and larger values for even
M . Second, the characteristics of ΛM as function of M
changes from localized (with negative slope) at small M
to extended (with positive slope) at larger M for W < 7.
Let us consider for instance the data for W = 6. For
M < 11, ΛM decreases with M , which is typical for local-
ized states. Up to M ≈ 25 the data still decrease, but the
slope tends to zero. For M > 25 it starts to increase, indi-
cating extended behavior. Therefore one has to extend the
calculation at least to M = 35 to find the correct crit-
ical disorder in this case. For smaller M , Wc would be
systematically underestimated even when applying



F. Milde et al.: Critical properties of the metal-insulator transition in anisotropic systems 687

−4 −2 0 2 4
E

0

0.05

0.1

0.15

0.2

ρ(
E

)

M=11
M=12

Fig. 2. DOS for M weakly coupled planes of size M ×M with
W = 3 and γ = 0.96 for an odd and an even M .

the FSS procedure. We remark that, e.g., the computa-
tion of the data point for W = 8, system size M = 36,
and relative error of 0.2% takes several weeks on a 400
MHz Pentium II machine.

We attribute these oscillations of ΛM to a structured
density of states (DOS) ρ(E) at these large γ and rela-
tively small W . We show an example in Figure 2. The
structure comes from very small (M ×M) planes in the
bar which are very weakly coupled in the perpendicular
direction. The coupling between the planes is so small for
γ > 0.9, that ρ(E) is nearly equal to the DOS of an ensem-
ble of uncoupled 2D systems [6]. In such small 2D systems
the relatively weak disorder is not sufficient to completely
smear out the peaks in the DOS of the ordered system.
Thus, at E = 0 there is a peak for even but a dip for odd
system sizes as can be seen in Figure 2. In our opinion,
for the TMM in perpendicular orientation, M has to be
at least so large that all the finite size structure in ρ(E)
has vanished in order to get reliable results. For the TMM
in parallel orientation, smaller M are sufficient, since the
planes or chains extend along the bar so that the DOS is
smoothened.

The change from positive to negative slope of ΛM can
be modeled [24] using corrections to scaling [11] as will
be introduced in Section 4.2. Due to the small size of the
coupled planes/chains in the bar, such finite-size effects
are much stronger for perpendicular compared to parallel
orientation.

4 Computation of the critical properties
at the MIT

4.1 Anisotropy dependence of Wc

Depending on the quality of our available data, we com-
pute the critical disorder with different methods. The
results are shown in Figures 3 and 4. Particularly for
the perpendicular orientation we estimate Wc from plots
of ΛM versus M as in Figure 1. As described above,
a constant behavior of ΛM for large system sizes indi-
cates Wc. For data without the described features due to
a structured DOS, i.e., for parallel orientation, we plot
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Fig. 3. Anisotropy dependence of Wc for coupled planes as
computed by TMM in parallel (‖) and perpendicular (⊥) di-
rection, previously by MFA [6] and recently by ELS [8]. The
thick and thin solid lines indicate our power-law fit to the
data and the corresponding error estimate of the exponent
β = 0.25 ± 0.05, respectively. We also added a fit to TMM
data of reference [3] (dashed line). Note the large systematic
error explained in Section 3 for the TMM in perpendicular
direction at γ = 0.99.
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Fig. 4. Anisotropy dependence of Wc for coupled chains as
computed by TMM in parallel (‖) and perpendicular (⊥) di-
rection, previously by MFA [6] and recently by ELS [8]. The
thick and thin solid lines indicate our power-law fit to the
data and the corresponding error estimate of the exponent
β = 0.59 ± 0.06, respectively. We also added a fit to TMM
data of reference [3] (dashed line).

the disorder dependence of ΛM for several system sizes
as in Figure 5. The transition is indicated by a cross-
ing point of the ΛM (W ) curves. We use FSS for high
quality data as described in the next subsections. Our
results for Wc are in good agreement with results from
ELS [7,8] and MFA [6]. The power-law dependence
on anisotropy Wc = 16.5(1 − γ)β is confirmed.
Using all data from MFA [6], ELS [7,8], and the
present TMM, we find β = 0.25 ± 0.05 and β =
0.59 ± 0.06 for coupled planes and chains, respec-
tively. The latter deviates slightly from the CPA
result [3,4] β = 0.5.
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4.2 Finite-size scaling

The MIT in the Anderson model of localization is ex-
pected to be a second-order phase transition [20,25]. It is
characterized by a divergent correlation length ξ∞(W ) =
C|W −Wc|−ν , where ν is the critical exponent and C is
a constant [9]. To construct the correlation length of the
infinite system ξ∞ from finite size data ΛM [9,21,22], the
one-parameter scaling hypothesis [26] is employed,

ΛM = f(M/ξ∞). (5)

All ΛM are expected to collapse onto a single scaling curve
f , when the system size is scaled by ξ∞. In a system with
MIT such a scaling curve consists of two branches corre-
sponding to the localized and the extended phase. One
might determine ν from fitting ξ∞ obtained by an FSS
procedure [23]. But a higher accuracy can be achieved by
fitting directly the raw data [23]. We use fit functions [11]
which include two kinds of corrections to scaling: (i) non-
linearities of the disorder dependence of the scaling vari-
able and (ii) an irrelevant scaling variable with exponent
−y. Specifically, we fit

ΛM = f̃0(χrM
1/ν) +M−yf̃1(χrM

1/ν), (6)

f̃n =
nr∑
i=0

aniχ
i
rM

i/ν , χr(w) = w +
mr∑
n=2

bnw
n (7)

with w = (Wc − W )/Wc and ani and bn expansion co-
efficients. Choosing the orders nr and mr of the expan-
sions larger than one, terms with higher order than linear
in the W dependence appear. This allows to fit a wider
W range around Wc than with the previously used linear
fitting [10]. The linear region is usually very small. The
second term in equation (6) describes the systematic shift
of the crossing point of the ΛM(W ) curves [10,11] visible,
e.g., in Figure 5 and its inset. This correction term van-
ishes for large system sizes, since the irrelevant exponent
y > 0.

For the nonlinear fit, we use the Levenberg-Marquardt
method [11,27] as in reference [8]. It minimizes the χ2

statistics, measuring the deviation between model and
data under consideration of the error of the data points.
We estimate the quality of the fit by the goodness of fit
parameter Q [27]. It considers χ2 and the number of data
points and fit parameters. For reliable fits it should lie in
the range 0.01 < Q < 1 [27]. We check the confidence
intervals obtained from the Levenberg-Marquardt routine
by a Monte Carlo and a bootstrap method [27]. Addition-
ally, we test whether the fitted values of Wc, ν, and y
are compatible when using different expansions of the fit
function, i.e., different orders nr and mr [8].

4.3 Determination of ν

We estimate ν for coupled planes with strong anisotropy
γ = 0.9, where we have the most accurate data. A paral-
lel orientation of the transfer-matrix bar is used in order
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Fig. 5. Reduced localization length for coupled planes with
γ = 0.9 and M = 5, 6, . . . , 17. The lines are fits of the data
according to equations (6) and (7) with nr = 3 and mr = 2. In
the inset we enlarge the central region without the data points
to show the shift of the crossing point.

to avoid the problems discussed in Section 3. Although
it is possible to fit the data for perpendicular orienta-
tion at γ = 0.9 using “irrelevant” and non-linear correc-
tions to scaling [24], higher orders of the expansions are
needed which requires more and more accurate data in or-
der to achieve a precise estimate for ν. On the other hand,
the convergence of the TMM is much slower for parallel
orientation and the computing time to achieve a certain
accuracy increases remarkably.

We computed ΛM up to M = 17 with 0.07% relative
error for 8.1 ≤ W ≤ 9, for W = 8, 9.1, and 9.2 the rel-
ative error is 0.14%. As we show in Figure 5 we find a
clear signature of an MIT, a crossover from increasing to
decreasing behavior of ΛM with growing M when disor-
der changes from 8 to 9.2. The lines for constant M do
not cross exactly in a single point. In the inset, a small
systematic shift is clearly visible. Thus, we include the
second term of equation (6) when fitting the data. All fits
reported in Table 1 describe the data very well. This is
expressed by the large values of Q > 0.7 and can also
be seen in Figure 5 where we show the data and the fit
functions for an exemplary set of parameters nr,mr. The
corresponding scaling function and scaling parameter are
displayed in Figure 6 and its inset. All data collapse al-
most perfectly onto a single curve with two branches. In
connection with the divergent ξ∞, this clearly indicates
the MIT. We also tried to use smaller orders of the ex-
pansions than in Table 1, but then it was not possible to
fit the data in the whole W interval with the desired high
quality.

When comparing the spreading of the fitted Wc and
ν values in Table 1 with their confidence intervals for
the case that all system sizes are used in the fits (open



F. Milde et al.: Critical properties of the metal-insulator transition in anisotropic systems 689

Table 1. Fit parameters and estimates for Wc and ν with 95% confidence intervals from fitting ΛM for coupled planes with
γ = 0.9. The symbol in the first column is used in Figure 7.

M nr mr χ2 Q Wc ν y

M 5 · · · 17 3 1 306.2 0.789 8.62 ± 0.01 1.65± 0.04 1.56 ± 0.27

C 5 · · · 17 2 3 309.8 0.745 8.64 ± 0.01 1.59± 0.04 1.31 ± 0.23

O 5 · · · 17 3 2 303.0 0.815 8.63 ± 0.01 1.64± 0.04 1.51 ± 0.27

B 5 · · · 17 3 3 300.7 0.829 8.63 ± 0.01 1.64± 0.04 1.55 ± 0.27

N 7 · · · 17 3 1 218.6 0.995 8.64 ± 0.03 1.66± 0.07 1.34 ± 0.77

J 7 · · · 17 2 3 211.7 0.998 8.65 ± 0.02 1.60± 0.05 1.34 ± 0.47

H 7 · · · 17 3 2 209.2 0.999 8.64 ± 0.02 1.62± 0.07 1.38 ± 0.51

I 7 · · · 17 3 3 208.9 0.998 8.65 ± 0.03 1.59± 0.12 1.24 ± 0.58
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Fig. 6. Scaling function and scaling parameter, shown in the
inset, corresponding to the fit in Figure 5. The symbols distin-
guish different W values of the scaled data points.

symbols), the error estimates appear to be slightly too
small. The 95% confidence intervals of the smallest and
largest Wc value do not overlap. We thus conclude Wc =
8.63 ± 0.02. In Figure 7 we show the fitted ν values and
their confidence intervals together with results from our
recent ELS study [8] using the same fit method. The char-
acters A to E denote ELS results from different combina-
tions of W and M intervals. Despite the high accuracy of
the data of 0.2% to 0.4% relative error for large system
sizes up to M = 50 and large Q values, the results for ν
scatter strongly. The 95% confidence intervals apparently
do not describe the correct error in this case. But for the
TMM data, the error estimate for ν seems to be appro-
priate. We emphasize the importance of having very ac-
curate data for high system sizes as prerequisite to obtain
reliable critical exponents. Furthermore, it is necessary to
compare the results of different fits to get reasonable error
estimates.

In order to test for a possible systematic trend in the
finite size behavior, we have repeated the fits neglecting
the smallest system sizes M = 5, 6. This is denoted by
filled symbols in Table 1. The results do not change, only
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Fig. 7. ν and its 95% confidence intervals from the fits of the
ΛM data as reported in Table 1. Large characters denote fits
of ELS data from reference [8]. The • data indicate results
of reference [11] for the isotropic case γ = 0. Solid and dashed
lines indicate the error bounds for the present result ν = 1.62±
0.07 and the ELS result [8] ν = 1.45 ± 0.2, respectively.

the error increases. We summarize our result for the crit-
ical exponent as ν = 1.62 ± 0.07. This is different from
ν = 1.3± 0.1 and larger than ν = 1.3± 0.2 obtained pre-
viously [3,4] from data with a relative error of about 2%
for system sizes up to M = 15 and 17 for the parallel and
perpendicular direction. Since we use more accurate data
with slightly larger system sizes we expect our result to
be more reliable. If one considers that the previous error
estimates ±0.1 and ±0.2 were obtained [4] from averaging
over 7 ν values which scatter from 1.08 to 1.93 and 0.98
to 2.39, respectively, we believe that these error bars are
too small. Assuming a more realistic error, the previous
results are consistent with ours. Furthermore, our estimate
ν ≈ 1.6 is in good agreement with high accuracy TMM
studies for the isotropic case [10,11,28]. For comparison,
we have added the results of reference [11] to Figure 7. In
our recent ELS study [8] we obtained ν = 1.45±0.2. As in
other ELS studies [29,30], the critical exponent is smaller
than deduced from highly accurate TMM data. However,
within the error bars, that result is consistent with our
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present finding. In reference [8] a trend towards larger ν
was found when the data from smaller samples were ne-
glected. A further increase of ν can be presumed if the
system size could be increased further. We believe, that
for large enough system sizes TMM and ELS will give the
same results.

5 Summary

We have studied the metal-insulator transition in the 3D
Anderson model of localization with anisotropic hopping.
We used TMM together with FSS analysis to characterize
the MIT. Our results confirm the existence of an MIT for
anisotropy γ < 1 for weakly coupled planes and weakly
coupled chains and the power law decay of the critical
disorder with increasing anisotropy found in studies using
TMM [3,4], MFA [6], and recently by ELS [7,8]. In these
anisotropic systems there are two possible orientations of
the transfer matrix bar. We have shown that the critical
disorder Wc is, as expected, the same for both possibili-
ties. But we remark that for strong anisotropy γ very large
system sizes are necessary for the perpendicular orienta-
tion in order to find the correct Wc. This is in part due
to the small size of the weakly coupled planes or chains in
the bar which results in a structured DOS.

For the case of weakly coupled planes with γ = 0.9 and
parallel orientation we computed ΛM with 0.07% relative
error for system widths up to 17 × 17. Using a method
to fit the data [11] which considers corrections to scal-
ing due to an irrelevant scaling variable and nonlineari-
ties in the disorder dependence of the scaling variables we
have deduced a critical exponent ν = 1.62± 0.07. This is
clearly larger than ν = 1.3± 0.1 obtained previously [3,4]
for the same system. Since this result was obtained from
less accurate data (≈ 2% relative error) and slightly
smaller system sizes, we believe that the previous error es-
timate is too small. Even from highly accurate ELS data
(0.2% to 0.4% relative error) and system sizes up to 503

the error estimate is twice as large: ν = 1.45 ± 0.2 [8].
We have shown that large system sizes and high accura-
cies are necessary to determine the critical exponent re-
liably. Our result is in good agreement with other high
accuracy TMM studies for the orthogonal universality
class [10–12,28]. These numerical estimates of ν seem to
converge towards ν ≈ 1.6 [31]. Experimentally it is of
course even more difficult to determine the exponent ν
of the Anderson transition. Recent attempts of dynam-
ical temperature scaling have shown that the statistical
accuracy of the experimental data is less than in the nu-
merical studies [16,19,32], but there also seems to be a
trend towards larger values of ν [13,16].

We thank K. Slevin and T. Ohtsuki for communication of their
results prior to publication. This work was supported by the
DFG within SFB 393.
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